Semismooth support vector machines
نویسندگان
چکیده
The linear support vector machine can be posed as a quadratic program in a variety of ways. In this paper, we look at a formulation using the two-norm for the misclassification error that leads to a positive definite quadratic program with a single equality constraint when the Wolfe dual is taken. The quadratic term is a small rank update to a positive definite matrix. We reformulate the optimality conditions as a semismooth system of equations using the Fischer-Burmeister function and apply a damped Newton method to solve the resulting problem. The algorithm is shown to converge from any starting point with a Q-quadratic rate of convergence. At each iteration, we use the Sherman-Morrison-Woodbury update formula to solve a single linear system of equations. Significant computational savings are realized as the inactive variables are identified and exploited during the solution process. Results for a 60 million variable problem are presented, demonstrating the effectiveness of the proposed method on a personal computer.
منابع مشابه
A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملA Comparative Approximate Economic Behavior Analysis Of Support Vector Machines And Neural Networks Models
متن کامل
Face Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 101 شماره
صفحات -
تاریخ انتشار 2004